
A DATA ADAPTATION APPROACH FOR A HW/SW MIXED
ARCHITECTURE

(CASE STUDY: 3D APPLICATION)

Tarek FRIKHA, Nader BEN AMOR, Khaled Lahbib, Jean-Philippe DIGUET*, Mohamed ABID
CES-Laboratory,Lab-STICC*

Sfax University, National Engineering School of Sfax, Sfax, TUNISIE
Université de Bretagne SUD, Lorient, France

Sfax TUNISIA

Abstract: This Embeddd systems use emerges in the electronic field. Many applications have been
embedded such as network, image processing, signal processing … The emergency of multimedia applications
particularly in mobile embedded systems puts new challenges for the design of such systems. The major
difficulty is the embedded system’s reduced computational resources that must be carefully exploited to
execute variable workload due to many parameters such as data. In this paper, we propose an adaptive
architecture based on dynamical partially reconfigurable approach that manages the system architecture
complexity according to the data variability. The augmented reality application is the case study application to
confirm the proposed approach.

Key-Words: - Data adaptation, dynamical partially reconfiguration, augmented reality, 3D application,
hardware accelerator, hardware software adequacy.

1 Introduction:
The multimedia embedded applications inflate

the computer sciences domain. Watching for
example to a HD video or a 3D movie is now
possible not only with a 3D TV but also possible on
small portable systems such as smartphone and
tablets.
The design of such systems faces many challenges
due to the limited available resources and the
external environment fluctuations such as noise,
application variation, and dynamic nature of
applications… To increase embedded application
quality, we use adaptation techniques.
The adaptation techniques concern many layers such
as application, OS, network, middleware, hardware
[1]…
In the hardware adaptation layer, the
hardware/software (HW/SW) adequacy of systems
is a promising solution. The software application
use permits to have the easiest solution whereas the
mixed one is more complex and increases the
quality of service of the application.
In this paper, we propose an approach based on data
adaptation. According to the input data, we modify
the mixed HW/SW application. As case study, we
choose an augmented reality application (AR). The
described approach is tested on the 3D application.

AR technique consists to enhance real video
sequences with virtual objects. [2] The AR touches
many fields such as : medicine (3D organs
modeling…), military (Head-Up Display), industrial
(total immersion, remote maintenance [3]),
marketing and commercial (advertisements, virtual
visits…), entertainments (video games and sport
events (player numbers, offside virtual lines, WR
comparison line, give visual information for TV
viewers from hidden angles in sport match [3] …).
[4]
Our target AR application is the combination of a
video flow recorded with a camera and 3D images
synthesis.
The paper is organized as follows. Section II gives
our work major features and compares it with
related works. Section III presents our application
design and details our Hardware accelerator. Section
IV shows the implementation and the obtained
results. Finally, section V concludes the paper with
a brief outlook on future works.

2 State of art:
2.1. Adaptive techniques:

The augmented reality application needs a real
time execution. The 3D application insertion must
be coherent with the video flow. That’s why we

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Tarek Frikha, Nader Ben Amor, Khaled Lahbib,
Jean-Philippe Diguet, Mohamed Abid

E-ISSN: 2224-266X 263 Issue 9, Volume 12, September 2013

have to adapt the 3D application. Various adaptation
techniques have been proposed to ameliorate the
quality of application. To adapt the application,
many techniques can help us to create an optimized
architecture. We can use the Multifacet’s general
execution-driven multiprocessor simulator (GEM 5)
simulator for modelling a multicore embedded
system [5]. Many different works used adaptive
techniques. The adaptive techniques touch
monoprocessor and multiprocessor architectures.
We will expose in this state of art some related
works done for each type of architectures.

2.1.1 Monoprocessor architectures:
Many works used monoprocessor architectures

for different applications. For 3D applications Kais
Loukil & all used monoprocessor architecture for
hardware application accelerators. The created
accelerators used Altera IP’s. [1]
Kais Loukil used an adaptation approach based on
application, OS, middleware and hardware layers.
He proposed an approach validated by a 3D
application but don’t depend on the data adaptation.
The used architecture does not change if the
coordinates number is modified in the application
input.

2.1.2 Multiprocessor architectures:
Many applications used multiprocessor

architectures for different multimedia applications.
L.F Ye and all, used in [7] multiprocessor
architecture with partial reconfiguration application.
Y.Corre & all [8] used MPSOC architecture for an
MJPEG application. The proposed architecture
based on Xilinx platform used 2 microblazes. It
optimized the application complexity with the
quality of service (QoS). In [8], the adaptation
techniques allow obtaining a decompressed video
turning with a better quality.

2.1.3 Approach setup:
In our application, we choose to adopt a

monoprocessor architecture using a microblaze with
hardware IP described in VHDL language. The
augmented reality adaptation concerns the 3D
application. We will use the adaptation technique to
the application. The figure 1 describes our
adaptation technique for the chosen application.

According to the input coordinate number we
adapt our architecture. If the number of coordinates
increases, the adapted architecture will change. The
architecture and particularly the developed IPs
depend on the number of data. In the next part, we
will describe the application design and the used
hardware accelerator.

Application

Adaptation

Augmented
reality
application
display

Coordinates
and color
inputs

Data

Figure 1: Application adaptation

2.2. Data adaptable computing :

As described previously, our application
concerns the data adaptation. In most multimedia
applications, the data profile of the incoming data is
contained within the header of an incoming data
stream, which can be examined to determine if a
suitable hardware implementation is available for
any of the application’s tasks. The combined
HW/SW implementation uses different accelerators.
According to the application data input, we choose
and implement the adequate accelerator.

Many approaches permits to generate from data
inputs a mixed HW/SW reconfigurable application
implemented in FPGA platforms. The Data-
Adaptable Reconfigurable Embedded System
(DARES) approach [9] is based on generating a
mixed HW/SW reconfigurable application. DARES
also enables the efficient realization of an adaptable
HW/SW implementation for many applications such
as JPEG, JPEG 2000 [10] and streaming.

For the latter many languages have been
developed for streaming application supporting
software such as OpenCL, OpenMP [11] and
hardware based implementations like ImpulseC.
[12]

The DARES approach consists, using an
application and Data profile model, to generate a
software binary, using software compiler GCC. The
hardware tasks are transformed to Hardware IP
using ImpulseC CoDeveloper. The hardware task
bitstreams are added to the software binary and are
implemented on FPGA ML 507.

The hardware generated accelerators are generic.
The adaptation part depends on the application
change: if we change an application, we create a
new architecture. Our approach is based on creating
an architecture containing a fixed part and a
modifiable one which depend on the data
characteristics.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Tarek Frikha, Nader Ben Amor, Khaled Lahbib,
Jean-Philippe Diguet, Mohamed Abid

E-ISSN: 2224-266X 264 Issue 9, Volume 12, September 2013

3 Approach validation:
In this part, we’ll talk about the 3D application

and the chosen approach to validate the embedded
application. This classical approach is based on the
Gouraud shading algorithm [13].

3.1. Description and implementation of the
3D application:

3.1.1 3D image synthesis application overview:

Figure 2: Graphical 3D pipeline

The 3D application is depicted on figure 2. The
triangles represent the input of our 3D graphical
pipeline (Figure 2). The transformation step
represents the conversion from local coordinate
system to a global one, which is the camera
coordinate system. We’ll use translations, rotations
and homoteties to obtain the final result.

The visibility test consists in identifying which
pixel will be viewed and which one will be hidden
on the screen using the angle between the vision
vector and the hidden one.

The luminosity calculation step gives the
luminous intensity attributed to each pixel.

The clipping step consists in eliminating the
pixel which will not be on the projected screen but
on the computer monitor: if the pixel is a hidden
one, it is not displayed.

The projection step is the application of the
projective geometry which consists on how
displaying a 3D point on a 2D scene.

The rasterisation step is very important because
it gives the projected 2D objet a 3D visual aspect
when it is projected on the screen. Because of the
complexity of the 3D application, we accelerate this
software application by introducing hardware
blocks. Inspired by the GPP architecture, the
software bloc communicates with hardware blocks
with the FSL bus.
3.1.2 Application analysis and profiling

We use a 3D application available as a C code.
In this application the object rotates around different
axis. Due to its complexity, the software application
version can be displayed but is so slow. Using
architecture with a microblaze and without hardware

IP, we obtain a 3D application turning into 6.5
seconds.

To know which functions must be transformed
on a hardware block, we analyze the functions and
particularly arithmetic used operations that consume
the major part of execution time.

The used functions to prepare the geometric
object are:

 Triangles:
 Preparpal : permits the color level

calculation.
 Transformations:
 Identity matrix: create an identity matrix
 Scale matrix: zoom the object to obtain

the needed object scale.
 Rotation: calculates the rotation of the

used object.
 Translation: calculates the translation of

the used object.
 Visibility test, Luminosity calculation and

Texture transform:
 Perspective transform: calculates the

object coordinates projective geometric.
 Matrix multiplication: calculates the

multiplication of two 4*4 matrix.

Some used functions are repeated one. The
clipping and projected functions are repeated. These
functions are:

 Matrix transform: multiply each triangle
summit with the generic matrix obtained
after the previous described geometric
operations.

 Normalization: permits to obtain the
normalized surface vector. This function
contains two important functions which
are vectorial and normalize.

The vectorial function permits to calculate the
vectorial product between two vectors. The
normalize function contains many arithmetic
operators such as square root, divisions, additions
and subtractions. The final group of functions
contain the dessine_object function and particularly
hline one. This function permits to fill each polygon
of the 3D object.

The figure 3 represents the 3D algorithm
functions.
We need to accelerate the application by creating
hardware blocks replacing the heaviest 3D
application functions. To know which functions
must be transformed on a hardware block, we
profile the native C code via the Xilinx EDK
profiling tool.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Tarek Frikha, Nader Ben Amor, Khaled Lahbib,
Jean-Philippe Diguet, Mohamed Abid

E-ISSN: 2224-266X 265 Issue 9, Volume 12, September 2013

Preparepal

Ident_matrice Copy_matrice

EchelleMult_matrice

Ident_matrice

Copy_matrice

Copy_matrice

Copy_matrice

Rotation1
Ident_matrice

Ident_matrice

Copy_matrice

Copy_matrice

Rotation1
Ident_matrice

Ident_matrice

Copy_matrice

Copy_matrice

Translation Mult_matrice

Ident_matrice

Copy_matrice

Copy_matrice

Copy_matrice

es_perspectiveesFrustum

Mult_matrice Copy_matrice

Transformation

Load asc

Calcnormal
Vectoriel

Normalise

Dessine_objet
Ordre

Scalaire
Hline

Figure 3: 3D application functions

The table 1 represents the 3D application profiling.
Table 1: 3D’s function application profiling
Functions Time percentage
Hline 69%
Rotation 13%
Echelle 5%
Translation 5%
All other functions < 2%

The profiling result shows that the polygon
filling takes the most important part of 3D
application. The 3D application is based on a
rotation around an only one axis.

69% of the application time was dedicated to the
Hline function which is oriented to fill in each pixel
the attributed color value. Each pixel of the triangle
contains a value which is an integer that belongs to
[0,255]. We must assign the appropriate value to
each pixel. However, one may keep in mind that this
profiling depends on the benchmark.

All the other application function didn’t use less
than 13% and that’s why we choose the Hline to
accelerate it.

The Hline function can be called “pixel shading”
whereas the rotation and translations functions
represent the geometry’s one.

Our 3D object is formed by a set of triangles.
Each triangle is filled using horizontal lines formed
with pixels. The Hline function attributes to the
pixels of each horizontal line of each triangle the
color value according to the Gouraud shading
algorithm.
3.1.3 Hline hardware accelerator architecture:

The implementation of the hardware accelerator
aims to speed up a low frequency low cost
architecture to display the 3D object moving on the
screen without being heavy.
Our study and implementation is based on Virtex 5
that can be dynamically and partially reconfigured.
Figure 4 represents the accelerator with more details
This accelerator contains two important stages:
 Lines extremities determination
 Pixel color filling.
3.1.2.1 Segment’s extremity determination

(SED):
The line extremities determination is

represented by two steps which are represented in
the figure 4:
 Segment’s extremity determination.
 Segment’s pixel extremities filling

Figure 4: 3D triangle’s pixel filling accelerator

Segment extremity determination consists on
finding the x coordinate of the pixels which are the
extremity of each triangle’s line side.

Every triangle is formed by three sides. To fill the
entire triangle we have to find the pixels which are
on every triangle side. Since the triangle is
displayed on the screen our landmark entity will be
the pixel not only horizontally but also vertically.
To find the triangle segment’s extremity we must
find director coefficients of each triangle’s side.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Tarek Frikha, Nader Ben Amor, Khaled Lahbib,
Jean-Philippe Diguet, Mohamed Abid

E-ISSN: 2224-266X 266 Issue 9, Volume 12, September 2013

Using the three top coordinates, we can calculate the
director coefficient using the equations system:

Each pixel value will be incremented by the
director’s coefficient a. We skim from the minimum
value of the abscise to the maximum one.

To obtain the coefficient a value, a division is
required. This arithmetical operation is done by
using the IP core generator of Xilinx.

3.1.2.2 Segment’s pixel filling(SPF):

Pixel color filling is also based on two steps:
 All triangles pixels filling.
 Saving data on memory.

The color value of each pixel obtained is the
difference between the vertices colors divided by
the difference between Yb and Ya as mentioned in
equation (3):

Once all triang les are found, all these values will
be saved on the FPGA external dual port BRAM
memory [18]. We use a dual port BRAM memory
because we need to save the SPF data on the
memories. These data will be used as the input of all
triangle pixels fillings blocs.

Finally, we will focus on the accelerator which is
the Pixel color filling.

3.1.2.3 All triangles pixels filling:

After filling the color value of the triangle’s side,
we’ll find the value of the color of each pixel
interior to our triangle. We’ll use the same method
used for the triangle extremities values.

Then, we’ll save the pixels filling values on a
BRAM bloc.

3.1.2.4 Saving data on the memory:

The last step of our accelerator will be to save the
data obtained on a BRAM memory bloc.

This bloc generated by the Xilinx IP core
generator also contains every pixel abscise value
and the color that we’ll affect to this pixel. These
values will be used when we’ll obtain the entire
image to display on the screen after the entire
treatment.

The figure 5 represents the entire 3D accelerator.

Figure 5: 3D triangle’s pixel filling accelerator steps

Global flexible architecture :The whole project
lies on a concept of self-adaptive architecture based
on a softcore (Microblaze) [13] enhanced with a set
of reconfigurable VHDL accelerators (see figure 6).
Based on various profiling we can observe that
Geometry Computation and Hline accelerators must
be considered. However the number of accelerator
of each kind can be adapted according to application
needs. The Hline accelerator integration is detailed
in the next section.

Figure 6: Global architecture: G: Geometry, H:
Hline

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Tarek Frikha, Nader Ben Amor, Khaled Lahbib,
Jean-Philippe Diguet, Mohamed Abid

E-ISSN: 2224-266X 267 Issue 9, Volume 12, September 2013

3.1.2.5 The filling application : Hline
architecture

The interface between Microblaze and
accelerators is based on FSL bus; since FSL FIFOs
provide fast communication between hardware
blocks and the processor.

Figure 7: Hline architecture

Figure 7 represents the accelerator’s architecture.
The Microblaze, communicates with a black Box
containing the two VHDL functions which write
data on BRAMs.

The microblaze communicates with Black box
through a FSL bus. The inputs of the black box are
processed by the SED module. The SED results are
saved in the first BRAM block.

This data are the input of the SPF module which
fills all the triangles color in the second BRAM
block.

The resulted data are sent via the FSL to the
Microblaze to end the process. This data are sent for
the VGA controller to display it.

We test this architecture with the 3D application.
We do the test with an only one hardware
accelerator then with 4 accelerators in parallel.

Aiming the AR applications, we’ll not project the
3D object on the screen but a smallest representation
of it on the screen.
3.2. Partially reconfigurable architecture and

obtained results :

Now, we describe the proposed reconfigurable
architecture and the obtained results. Instead of
using a static architecture with a great number of
frozen accelerators, we chose to make our approach
better using a partially reconfigurable architecture.

This architecture will contain a number of
accelerators which are not variable and another
number of accelerators which depends on the type
of the application.

3.2.1 Proposed architecture:

The adopted reconfigurable architecture is
described in the figure 8. There are 3 hardware
accelerator zones.

The zone 1 (Z1) contains Normal #1 and
Transform #1 as described previously. These
functions represented the geometric shader. This
zone is a permanent one. This zone is attached to the
microblaze [14] via FSL [19]. The data will be sent
to the zone 2 or zone 3 for vertex shading. The
microblaze is the Xilinx softcore.

The zone 2 is the reconfigured one. It can be used
for not only geometric shader but also a vertex one.
If we have a geometrically rich application, the zone
2 is similar to zone 1.

In this last case, the FIFO is virtual. We don’t
need it in geometric shader but we used it because
of the reconfigurable zone. This zone can be also a
vertex pipeline. This pipeline needs a FIFO to save
the data on it. The Reconfigurable zone needs to
have the same input and output despite the
configuration type. That’s why the FIFO is always
used in the second zone. This zone is also connected
to the microblaze via FSL. If the Z2 is similar to Z1
(moved object), the FSL send data to microblaze to
be treated after that by the zone 3 (Z3).

If the Z2 is similar to Z3 (textured object), the
output are saved on FIFO.

The third and final zone contains three blocks.
The barycentre block. This block determinates the
input of the Dessine-Poly (DP) block. These data
are saved on FIFO to be ready for the DP treatment.
The Z3 or/and Z2 results are saved after treatment
on a FIFO. The two blocks can be used in parallel.
For this reason we use the FIFO to save data.

The µB, is used to transfer data from FIFO to
VGA IP via the PLB bus [14]. We can use also a
picoblaze to do this task.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Tarek Frikha, Nader Ben Amor, Khaled Lahbib,
Jean-Philippe Diguet, Mohamed Abid

E-ISSN: 2224-266X 268 Issue 9, Volume 12, September 2013

Figure 8: Reconfigurable proposed architecture

4 Obtained results:

In this part we’ll talk about the obtained results of
the adaptive HW/SW adequacy. We begin by using
an adaptive approach based on adding many
hardware accelerators for obtaining a better 3D
displaying results.

4.1. Hline’s accelerator :

4.1.1. Different divisions description:

In the hline function we need to use a HW
division. We compare the both hardware accelerator
with a pure software division. We’ve used a Xilinx
IP. We have developed a division IP based on the
processor division.

The latter proposed division agorithm is
represented by the figure 9.

The proposed IP contains 5 states:
 IDLE: permits to initialise different signals.
 Sigcalcul : permits to know if it’s a negative or

positive division.
 Precalcul: permits to prepare to variables for

calculation
 Calcul: permits to calculate the results.
 Endcalcul : permits to find the final division

value.

Idle

sigcalcul

nb_it <32

precalcul

calcul

endcalcul

Figure 9: Proposed Division IP

The obtained results by the 3 different divisions
are described by the Table 2.

Table 2: Division comparison

Division Time Nb of slices

Created 67 clocks 134

Xilinx 8 clocks 1320

Soft 668 clocks

As shown in table 2, the created division is the
best one in terms of time consumption and number
of slices. In fact, using the Xilinx division makes the
FPGA saturated. We will describe in the next part
different division use in the IP generation.
4.1.2. Different divisions description:

The division IP developed by Xilinx is optimal in
term of time execution. The major problem of this
IP is that it consumes almost 1000 slices. That’s
why we can optimize the IP using Xilinx division IP
or Created division IP or finally a mixed one. We
describe the obtained results for the SED and the
SPF parts.

4.1.2.1 SED division optimization:

According to the SED IP, we used 6 divisions.
The use of the Xilinx one requires 8 clocks cycles
but 1320 slices. The use of two accelerators with the

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Tarek Frikha, Nader Ben Amor, Khaled Lahbib,
Jean-Philippe Diguet, Mohamed Abid

E-ISSN: 2224-266X 269 Issue 9, Volume 12, September 2013

used architecture requires almost 25% of the FPGA
surface. That’s why we prefer to use an only one
Xilinx division to not overcrowd it. When we
operate with the created division IP, we can use 6
divisions with parallelism. This block will use only
1072 slices in 67 cycles. The data comparison is
described in the table 3.

Table 3: SED comparison

Division Clocks time Nb of slices

6 created divisions 67 clocks 804

1 Xilinx division 64 clocks 1320

The use of the created divisions makes us lose 3
clocks cycles but we have a won of 516 slices. By
consequence, we prefer to use the developed
division IPs.

4.1.2.2 SPF division optimization:

According to the SPF IP, the required task needs
to have a division for each line calculation. For each
polygon, the number of lines belongs to the interval
[15 120].

We used two architectures. The first one contains
one Xilinx accelerator and the second one use 10
created accelerators in the same time. The obtained
results are represented in the figure 10.

Figure 10: Division VHDL IP

If the used polygon contains less than 18
segments, we use the Xilinx division IP. If the
polygon segments number is more than 18, the use
of created division IP permits to have an optimal
slice number.

4.1.3. Mixed SW/HW comparison :

The test of pure software 3D object code and the
mixed Software/Hardware one is exposed in the
Table 4.

Table 4: Software / Hardware comparison

Version Time (s) Frame/second (fps)

Software 6.5 0.15

Mixed HW/ SW

1 HW Block 0.273 4

4 HW Blocks 0.075 14

The hardware accelerator allows a speed up of
almost 24x. The use of multiple accelerators gives
implementation almost 87 times faster than the
software version. This improvement was possible
due to the architectural parallelism. A frame rate of
14 fps is achieved with 4 HW blocks, with an
acceleration of geometric functions and
improvement of the current standard C software
implementation the objective of 24fps will be
obtained.

The FPGA occupation after the hardware
implementation is described in the table 5. The use
of 4 hardware blocks is 4 times harder to design. We
increase the FPGA use to obtain a better result.

Table 5: Single Hline accelerator

Device utilization summery Number % ML 507

Slice Registers 5,790 12

Used memory 204 1

External Memory (kb) 1,080 20

We have presented our concept of flexible
architecture for AR systems and detailed the main
accelerator dedicated to pixel shading. The second
accelerator, dedicated to geometric operations will
be presented, in a following paper. The combination
of both accelerators will guaranty a 24 fps frame
rate with a 100MHz clock frequency. But, as
previously mentioned, resource requirements are
strongly data dependent in 3D applications. So, the

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Tarek Frikha, Nader Ben Amor, Khaled Lahbib,
Jean-Philippe Diguet, Mohamed Abid

E-ISSN: 2224-266X 270 Issue 9, Volume 12, September 2013

second step is the implementation of self-adaptation
as a software function on the Microblaze that
controls online the dynamic configuration of
hardware accelerators, according to application
needs. We’ve developed different accelerators using
a VHDL code. We tested the different blocs
independently.

Using an only one arithmetic accelerator we
obtained a gain of 25% in time execution. Let’s treat
the rotation part and specially the square root VHDL
development.
4.2. Square root VHDL coding :

In the rotation bloc, the square root bloc needs to
be transformed. It’s the harder and more
consumption bloc. As we do for the division bloc,
we create an sqrt VHDL bloc.

The blocs contained by the accelerator are:
 IDLE : Intial state.
 Nb_it : counter of the number of

itereations.
 Prep_coeff: permits to prepare de used

coefficients fot the bits detection of the
number.

 Diff_1: permits to calculate the result if
the the iteration number < 2.

 Prep_val : permits to find the data to use
for Diff_2

 Diff_2: permits to prepare the result. The
sqrt result is obtained when we have the
max of nb_it.

The sqrt developped bloc is described by the
figure 11.

Idle

nb_it

nb_it < 2 nb_it < 17

prep_coef prep_coeff

diff_1 prep_var

diff_2

Fin

nb_it =16

Figure 11: SQRT VHDL IP

After adding different IPs to the 3D application,
the profiling obtained results are summarized in the
table 6

Table 6: Single Hline accelerator

SQRT Time Slices

Created SQRT 64 clocks 40 slices

Xilinx SQRT 6 clocks 461 slices

Square root Soft 120 clocks

As for the division, the use of the created
SQRT provides a faster execution time by 50%
while consuming only 40 slices. Comparing to the
Xilinx solution, our solution is 10 times slower but
has the advantage of using ten times less slices.
4.3. Partial dynamically reconfiguration

approach :

In this part, we represent a partial dynamically
reconfiguration approach obtained results.

Using the reconfigurable proposed architecture
with different accelerators reconfigurable blocs
we’ve obtained the results of the table 7.

Table 7: Accelerator bloc execution time

Used function Execution time
cycles

% gain

Normalize 2397997 70

Transformation 325676 40

Barycentre and
dessine_poly

194244 70

Total 2917917 60

The table 7 that describes the accelerator
blocks time proves the important benefits obtained
by used accelerator hardware blocks. This gain is
obtained by using an only one hardware accelerator
for Z1 and Z2 blocks.

The total gain estimation obtained by using
hardware block is a 60% of execution time. The
same executed code is 0.4 times faster.

5 Conclusion and perspectives:

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Tarek Frikha, Nader Ben Amor, Khaled Lahbib,
Jean-Philippe Diguet, Mohamed Abid

E-ISSN: 2224-266X 271 Issue 9, Volume 12, September 2013

We have presented our concept of mixed HW/SW
architecture using accelerators dedicated to the 3D
application. The obtained results are very interesting
and make clearer the steps to do for obtaining a
better QoS. We adopt an architecture based on data
adaptation and implement it on the Xilinx ML
507embedded kit. The obtained results are very
positive and make easier the possibility of using this
architecture in our augmented reality application.

According to the complexity of the application in
term of texture or movement and our need to have a
general approach that can accept any type of 3D
objects.

The dynamically partial reconfiguration permits
to optimize the used surface and the time
consumption.

Our next goal consists of testing other
applications with the used architecture such Open
GL ES 3D application. We will use also the
consumption measurement results for including the
consumption constraint as an adaptation constraint.

References
[1] Kais Loukil, PhD, “Approche de gestion de

performances/contraintes pour lessystèmes
embarqués temps réel”, 2011

[2] Cemil Azizoglu, Ph. D, “High Performance
Graphics on Android”, Khronos group, 2010

[3] B. Thomas, B. Close, J. Donoghue, J. Squires,
P. De Bondi, M. Morris, and W. Piekarski.
“ARQuake :an outdoor/indoor augmented
reality first person application”. In The Fourth
International Symposium on Wearable
Computers, 2000.

[4] Gerhard Reitmayr, Tom W. Drummond “
Going out: Robust Model-based Tracking for
Outdoor Augmented Reality”.

[5] P. Fuchs, B. Arnaldi, and J. Tisseau. La réalité
virtuelle et ses applications,chapter 1, pages 3–
52. Les Presses de l’Ecole des Mines de Paris,
2003.

[6] P. Ngoc, G. Lafruit, J-Y. Mignolet , G.
Deconinck, and R. Lauwereins “QOS aware
HW/SW partitioning on run-time
reconfigurablemultimedia platforms”
Proceedings of the International Conference

onEngineering of Reconfigurable Systems and
Algorithms, ERSA'04, June21-24, 2004, Las
Vegas, Nevada, USA. CSREA Press 2004,
ISBN 1932415-42-4

[7] W. Van Raemdonck, G. Lafruit, E.F.M.
Steffens, C.M. Otero Pérez, R.J.Bril “Scalable
graphics processing in consumer terminals”
Multimediaand Expo, 2002. ICME '02.
Proceedings. 2002 IEEE
InternationalConference

[8] Youenn Corre, Jean-Philippe
Diguet, Dominique Heller, Loïc Lagadec: A
framework for high-level synthesis of
heterogeneous MP-SoC. ACM Great Lakes
Symposium on VLSI 2012: 283-286

[9] A.Milakovich, V.Shankar Gopinath,
R.Lysecky, J.Sprinkle, Automated Software
Generation and Hardware Coprocessor
Synthesis for Data-Adaptable Reconfigurable
Systems.

[10] Joint Photographic Experts Group. JPEG 2000.
Image Compression Standard, www.jpeg.org/
jpeg2000/

[11] Alarasighe, M Gordon, M. Karczmarek, J.Lin,
D.Maze, R.M?Rabbah, W.Thies. Language and
Compiler Design for streaming Applications.
Intenational Journal of Parallel Programming,
32(2), 2005

[12] Impulse Accelerated Technologies. Impulse
CoDeveloper, www.impulseaccelerated.com,
2010

[13] J. Flinn and M. Satyanarayanan, “PowerScope:
A tool for profiling theenergy usage of mobile
applications,” in Proc. of 2nd IEEE
Workshopon Mobile Computing Systems and
Applications, Feb. 1999.

[14] www.xilinx.com/support/documentation/sw_m
anuals/xilinx11/mb_ref_guide.pdf, MicroBlaze
Processor Reference Guide.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Tarek Frikha, Nader Ben Amor, Khaled Lahbib,
Jean-Philippe Diguet, Mohamed Abid

E-ISSN: 2224-266X 272 Issue 9, Volume 12, September 2013

